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1. Introduction 
 
This document describes, in some detail, the statistical methods we have used to 
analyse the data that supports the CQC Insight risk assessment model. 
 
This analysis is relevant to the majority of indicators, but not all, as some are 
already analysed by external organisations. Indicators that are analysed externally 
are summarised in section 6. 
 
Our general approach for the model is to assess risk by comparing a trust’s 
observed outcomes with others. Where appropriate, we account for the relative 
sizes of trusts and, in several cases, their variable case mix. 
 
We use a cross-sectional analysis, which assesses variation by comparing 
practice outcomes over a fixed period of time. Previous values or trends are not 
accounted for. 
 
 
2. Analysis of cross-sectional data using z-scores 
 
2.1  Z-scores 
 
With cross-sectional data we measure the deviation of observed values from an 
expected or target value. Where we can transform the data into a standard normal 
distribution we generate z-scores which reflect the number of standard deviations 
from the mean. 
 
If the trust value for an indicator is y, and it has an expected or target value t, we 
can express the deviation of the indicator from the expected value as a z-score, 
defined as: 

𝑧 =
𝑦 − 𝑡
𝑠0

 

 
where s0 is the standard deviation of y if the trust’s observed outcomes were 
randomly distributed about t. 
 
Here 𝑧 is referred to as the unadjusted z-score. Under a null hypothesis that a 
trust’s true level of outcomes is exactly the same as the expected value, 𝑧 has 
mean 0 and standard deviation 1, and if we assume normality, then p-values 
0.025 and  0.001 correspond to 𝑧 = ± 1.96 and 𝑧 = ± 3.10 respectively, which 
corresponds very closely to 2 and 3 standard deviations from the mean. 
 
The default expected values against which a trust is compared are calculated by 
comparing rates observed for an individual trust against the national rates. 
However, for some items we standardise by case mix (for example, by age and 
sex) in order to compare observed outcomes against what you would expect if the 
rate for each patient was the same as for similar patients over the whole country. 
Often the raw data are not normally distributed, in which case we use one of the 
following appropriate transformations. 
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2.1.1  Z-scores from proportions 
 
Assume an observed proportion 𝑦 = 𝑟 𝑛⁄ , with an expected or target proportion 𝑝. 
The observed proportion is transformed to render it more normally distributed by 
applying an arcsine transformation to the square root of the observed proportion: 
 

𝑌 = 𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑟
𝑛

 

 
The expected value can be approximated by: 
 

𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎�𝑝 
 
and the standard deviation (𝑠) is approximated by: 
 

𝑠 =
1

2√𝑛
 

 
Hence the transformed unadjusted z-score: 
 

𝑧 =
𝑌 − 𝑇
𝑠

= 2√𝑛�𝑎𝑎𝑎𝑎𝑎𝑎�
𝑟
𝑛
− arcsin�𝑝� 

 
 
 
2.1.2  Z-scores from standardised ratios 
 
This method is used when comparing an observed value against an expected 
value derived using indirect standardisation. 
 
We assume a standardised ratio 𝑦 = 𝑂

𝐸�  based on an observed count 𝑂 and an 
expected count 𝐸.  
 
A square root transformation is applied to the standardised ratio (𝑦): 
 

𝑌 = �𝑂
𝐸

 

 
which has an expected value approximately equal to one. 
 
Under appropriate Poisson assumptions, the standard deviation approximates to: 
 

𝑠 =
1

2√𝐸
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Thus, the transformed unadjusted z-score is given by: 
 

𝑧 =
𝑌 − 1
𝑠

= 2�√𝑂 − √𝐸� 
 
 
2.1.3 Z-scores from ratios of counts 
 
We assume a ratio indicator of the form 𝑦 = 𝑂1

𝑂2� , where 𝑂1and 𝑂2are both 

counts, and an average or target ratio t. 
 
In order to deal with zero/low counts we add 0.5 to all observations, and, noting 
that a log transformation reduces positive skewness, the transformed indicator 
becomes: 
 

𝑌 = 𝑙𝑙𝑙𝑒 �
𝑂1 + 0.5
𝑂2 + 0.5

� 

 
with an expected value approximately equal to 
 

T = 𝑙𝑙𝑙𝑒(𝑡) 
 
and a standard deviation: 
 

𝑠 = �
𝑂1

(𝑂1 + 0.5)2
+

𝑂2
(𝑂2 + 0.5)2

 

 
Thus the transformed, unadjusted z-score becomes: 
 

𝑧 =
𝑌 − 𝑇
𝑠

=
𝑙𝑙𝑙𝑒[(𝑂1 + 0.5) (𝑂2 + 0.5)⁄ ] − 𝑙𝑙𝑙𝑒(𝑡)
�𝑂1 (𝑂1 + 0.5)2⁄ + 𝑂2 (𝑂2 + 0.5)2⁄

 

 
If either 𝑂1 or 𝑂2 is much bigger than the other, say when one represents a 
population, it will have a negligible impact on the score. 
 
 
2.1.4 Z-scores from percentages 
 
We assume an indicator that consists of an observed percentage p, where the 
numerator and denominator are not available. We can then use the mean 
percentage across all providers and the standard deviation of the percentages to 
calculate the Z-scores. 
 
The Z-score for a provider is then given by: 
 

Z =  
(p −  p�)

s
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Where p is the percentage for the provider, p� is the mean percentage across all 
providers (or the target), and s is the standard deviation of the percentages across 
all providers. 
 
 
2.1.5 Low numbers z-scores (working z-scores) 
 
Where data do not meet numerator and denominator requirements, “working z-
scores” are more appropriate as it is not possible to generate sufficiently robust z-
scores using methods based on the normal distribution (i.e. those described in 
sections 2.1.1 to 2.1.4). 
Calculating “working z-scores” is a two-step process. The first step is to determine 
which alternative statistical distribution is the best fit to the data.  
Different types of data will have a different subset of potentially applicable 
statistical distributions (Table 1). 
 
Table 1: Statistical distributions tested for various data types 

Statistical distribution 

Data type Binomial* Poisson Zero-inflated 
Poisson 

Negative 
Binomial 

Zero-inflated 
Negative 
Binomial 

Raw count      

Ratio of counts      

Standardised 
ratio      

Proportion      

*Note: The Binomial distribution is used for proportions if the denominator in any time period is less 
than 30 and on average 0.1<p<0.9. The remaining applicable distributions are tested if the 
conditions for the Binomial distribution are not satisfied.  

 
The distributions are tested using regression models, where the dependent 
variable is the numerator and the independent variable is the denominator. If there 
is no denominator we use a null model (i.e. a model without any independent 
variables). 
For each model, a measure of model fit called Akaike’s Information Criterion (AIC) 
is obtained. The model with the lowest AIC is selected as being the better fit to the 
data. 
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The second step is to use the best-fit distribution to has generate a p-values for 
each observation in the dataset and convert these to z-scores using the normal 
distribution. This is done as follows: 
 

i. Use the mid-p-value method to calculate the probability of falling below the 
observed data point by chance alone, based on the best-fit distribution. 
Note: this might be 1 minus the usual p-value, which is a tail measure.  
 
The mid-p-value for O, as defined by Speigelhalter et al (2012), is calculated as 
follows: 

𝑝 = 𝑃𝑃𝑃𝑃(𝑌 < 𝑂) +
1
2
𝑃𝑃𝑃𝑃(𝑌 = 𝑂) 

where Y has the best-fit distribution. For computational simplicity it is easier 
to write it in a different form. Let F(.) be the cumulative distribution function 
of the best-fit distribution and P(.) the associated probability mass function. 
An equivalent expression for p is 

𝑝 = 𝐹(𝑂) −
1
2
𝑃(𝑂) 

 
ii. The next and final step is to convert p to the corresponding working Z-score 

from a standard Normal distribution. Let ɸ(.) be the standard Normal 
cumulative distribution function. Then 

𝑍3 = Φ−1(𝑝) 
 
The z-scores produced using this method then undergo the same testing and 
possible adjustment for over-dispersion (2.2) as would z-scores produced using 
our standard methods. 
 
 
2.2  Over-dispersion 
 
Many z-scores are likely to be over-dispersed, that is their true variances are 
greater than one, which may be because of insufficient benchmarking or the 
presence of common-cause factors that render the Poisson model inadequate. 
The consequence is that analyses may pick up statistically significant differences 
that are not of practical importance. When considering an outcome based on an 
‘average’ or ‘expected’ level, it may then be reasonable to accept as inevitable a 
degree of between-trust variability and we therefore seek to identify trusts that 
deviate from this distribution, rather than deviating from a single measure. In order 
to do this we must estimate the degree of over-dispersion (see section 2.2.2). 
When estimating over-dispersion it may be better to do so using techniques that 
avoid undue influence of outlying trusts, such as winsorisation (see section 2.2.1). 
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The significance of observed deviations then takes into account both the precision 
with which the indicator is measured within each trust (i.e. the sample size), and 
the estimated between-trust variability. 
 
 
2.2.1 Winsorisation 
 
Winsorisation is the process of transforming outliers in statistical data. In this 
context it involves shrinking in extreme unadjusted z-scores to the value of a 
selected percentile. This is done by: 
 

1. Ranking trusts according to their unadjusted z-scores. 

2. Identifying 𝑧𝑞 and 𝑧1−𝑞, the 100𝑞% most extreme high and low unadjusted 
z-scores, where q may be, for example, 0.1. 

3. Setting the lowest 100𝑞% of unadjusted z-scores to 𝑧𝑞 and the highest 
100𝑞% of z-scores to 𝑧1−𝑞. These are the winsorised statistics. 

 
This process retains the same number of Z-scores, but protects our estimation of 
over-dispersion from the influence of actual outliers. 
 
 
2.2.2  Estimating over-dispersion 
 
In calculating an adjusted z-score for an indicator, we estimate the over-dispersion 
factor phi (𝜙) as follows: 

𝜙� =
1
𝑛
�𝑧̂𝑖2
𝑛

𝑖=1

 

 
where 𝑛 is the number of trusts for a data item and 𝑧̂𝑖 is the winsorised z-score for 
the 𝑖𝑖ℎ trust.  
 
Under a null hypothesis that all units only exhibit random variability around the 
expected value, which is derived from the data, 𝑛𝜙� has an approximate 𝜒𝑛−12  
distribution. This can therefore be used as a standard test of heterogeneity. 
 
 
2.2.3  Calculating adjusted Z-scores 
 
We then use the resulting over-dispersion factor to calculate an adjusted z-score 
for each observation. 
 
The over-dispersion model we use is an additive random effects model. This 
model assumes that each trust has its own true underlying level 𝑡𝑖, and that for  
’on-target’ providers 𝑡𝑖 is distributed with mean 𝑡0 and standard deviation,τ. In 
other words the null hypothesis is represented by a distribution rather than a 
single point. 
 
A standard method of moments estimate for τ2 is: 
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𝜏̂2 =
𝑛𝜙� − (𝑛 − 1)

∑ 𝑤𝑖
𝑛
𝑖=1 − �∑ 𝑤𝑖

2𝑛
𝑖=1 ∑ 𝑤𝑗𝑛

𝑗=1� �
 

 
Where 𝑤𝑖 = 1

𝑠2�  and 𝑛𝜙� is the test for heterogeneity. (𝑠 is as calculated in section 
2.1 with the appropriate transformation.) 
 
If 𝑛𝜙� ≥ (𝑛 − 1) then the adjusted Z-scores are given by: 
 

𝑧𝑖∗ =
(𝑧𝑖 − 𝑡0)

�𝑠𝑖2 + 𝜏̂2
 

 
where 𝑧𝑖 is equal to the raw z-score value. 
 
Otherwise, if 𝑛𝜙� < (𝑛 − 1), 𝜏2 is set to zero, complete homogeneity is assumed 
and no adjustments are necessary.  
 
 
 
3. Cross-sectional analysis of raw counts data 
 
3.1 Poisson events 
 
In some instances, for example, when monitoring never events, observations may 
be sufficiently infrequent that it is not possible to generate sufficiently robust z-
scores. 
Where there is no evidence of over-dispersion, we can assume the events are 
Poisson distributed and establish levels of risk based on the probability any 
observed outcome could have happened by chance (the p-value). 
 
Suppose 𝑋 is a random variable representing the number of events reported at a 
trust over a given period of time and that 𝜆 represents the expected number of 
events, based on national reported rates. If 𝑛 events are observed, then a p-value 
can be expressed as: 
 

𝑝(𝑋 > 𝑛) = 1 − 𝑝(𝑋 ≤ 𝑛) + 0.5 𝑝(𝑋 = 𝑛) = 1 −�
𝜆𝑖

𝑖!
𝑒−𝜆

𝑛

𝑖=0

+
𝜆𝑛

2𝑛!
𝑒−𝜆 

 
(where the latter term of the formula is used as a mid-P-value). 
These p-values can then be used in correspondence with given thresholds of 
significance to define levels of risk. 
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3.2  Negative binomial distributions 
 
3.2.1  Fitting a model to the data 
 
For some events the Poisson assumptions may not provide a good fit to the data, 
in which case a negative binomial distribution may be more appropriate. Also, for 
some indicators there may be a disproportionate number of zeroes among the 
trust-level values, necessitating a zero-inflated model.  
 
Some of our count-based indicators are correlated with the volumes of patients 
seen by trusts, and so our assessment of risk needs to identify trusts that have 
unusually high counts compared with what would be expected given their patient 
volumes (measured in either bed-days or total patient contacts, both scaled by 
100,000). Other indicators consist of negative and positive comments, the 
numbers of which are often correlated. Here, our assessment of risk needs to 
identify trusts with unusually high counts of negative comments compared with 
what would be expected given their count of positive comments. 
 
The negative binomial distribution is expressed as: 
 

𝑓(𝑦𝑖|𝑥𝑖) =
Γ(𝑦𝑖 + 𝜃)
𝑦𝑖! Γ(𝜃) �

𝜃
𝜃 + 𝜇𝑖

�
𝜃

�
𝜇𝑖

𝜃 + 𝜇𝑖
�
𝑦𝑖

,𝑦𝑖 = 0, 1, 2, … 

 
Where 𝜇𝑖is the conditional mean, and θ is a positive gamma distribution parameter 
used to determine the conditional variance. 
 
The zero-inflated negative binomial model has two parts – a negative binomial 
count model as above, and a logistic regression model for predicting excess 
zeroes. Additional zeroes occur with the probability 𝜑𝑖 as determined by: 
 

𝜑𝑖 = 𝑓(𝑡) =
𝑒𝑡

𝑒𝑡 + 1
=

1
1 + 𝑒−𝑡

 
 
where 𝑓 is the logistic function and  𝑡 is typically a linear function of one or more 
explanatory variables. 
 
For a given count indicator, we determine which probability distribution – Poisson, 
negative binomial, zero-inflated Poisson, or zero-inflated negative binomial – is the 
best fit to the data, by modelling the raw count as a function of the most 
appropriate comparator – bed-days, total patient contacts, or count of positive 
comments. 
 
If 𝑌 is the count indicator and 𝑋 the comparator, our model seeks to determine: 
 

Pr (𝑌 = 𝑦|𝑋 = 𝑥) 
 
with estimated parameters 𝜇 �and 𝜃�. If there are no zeros, then we fit only the 
negative binomial model. If there are zeros, we fit each of the chosen distributions 
in turn. The measure of the fit of each model is expressed as a log-likelihood.  
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The ratio of the log-likelihoods of the two models is approximately chi-square 
distributed with degrees of freedom equal to 𝑑𝑑2 –  𝑑𝑑1, where, 𝑑𝑑2 is the degrees 
of freedom for the zero-inflated model (which is more complex) and 𝑑𝑑1 is the 
degrees of freedom for the ordinary negative binomial model. A statistically 
significant likelihood ratio test indicates that one model is a better fit than the 
other. 
 
 
3.2.2  Identifying extreme values 
 
Given the model of best fit, we iteratively establish levels of risk based on the 
probability that the most extreme outcome could have happened by chance (the p-
value). Each iteration of the model comprises a series of steps, as follows: 
 
 

i. First we condition on 𝑌 being positive, such that: 
 

Pr(𝑌 = 𝑦|𝑋 = 𝑥,𝑌 > 0) =
Pr (𝑌 = 𝑦|𝑋 = 𝑥)
Pr (𝑌 > 0|𝑋 = 𝑥)

=
{1 − 𝑝0(𝑥)}𝑓(𝑦|𝑥)

1 − 𝑓(0|𝑥)
 

 
This conditioning means that we do not need to be overly concerned about 
the point-mass at zero for the zero-inflated models as we are primarily 
interested in non-zero counts. 

 
ii. Next, we find the trust-level p-values. For example, for trust 𝑗: 

 
𝑝𝑗 = � Pr (𝑌 = 𝑦|𝑋 = 𝑥𝑗 ,𝑌 > 0)

𝑦≥𝑦𝑗

 

 
iii. We find the smallest p-value across all trusts (𝑝𝑚𝑚𝑚), and use this to calculate 

the group-level p-value (𝑝𝑔), which accounts for multiple comparisons: 
 

𝑝𝑔 = 1 − (1 − 𝑝𝑚𝑚𝑚)𝑀 
 

This is the probability that none of a sample size of 𝑀 is more extreme than 
𝑝𝑚𝑚𝑚. It is a measure of how much of an outlier 𝑝𝑚𝑚𝑚 actually is. 

 
iv. If 𝑝𝑔 is small (≤  0.20) then we conclude that the count associated with 𝑝𝑚𝑚𝑚is 

too high to have come from the fitted model. Trusts meeting both the 
𝑝 = 𝑝𝑚𝑚𝑚 and  𝑝𝑔 ≤ 0.20 criteria typically have very small p-values (much less 
than 0.05), and are therefore assigned to the “Elevated Risk” category. This 
trust is then removed from the dataset, and steps i. through iv. are repeated. 

 
If 𝑝𝑔 is large (>  0.20) then the trust with 𝑝 = 𝑝𝑚𝑚𝑚 is not an outlier, and we stop 
iterating the model. Of the trusts remaining in the dataset at this point, any with p-
values less than or equal to 0.05 are assigned to the “Risk” category. 
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4. Aggregate scoring methods 
 
4.1 Electronic Staff Record (ESR) data 
 
From the data provided a total of 6 individual items relating to staffing were 
created, each of which was allocated into one of the following categories: 
 
• Sickness 

• Staff Ratios 

• Support/Supervision. 
 
A list of items is shown in table 2. 
 
Table 2: Electronic Staff Record item list and parameters 
 
Area  Common area 

parameters 
Item Code Item Name  Parameters 

Sickness  Abs Rate Person 
Dim.User Person Type 
LIKE 'Employee%' 

MHWEL137 Proportion of days sick in 
the last 12 months for 
Medical and Dental staff 

Abs Rate Staff Group Dim.Staff 
Group LIKE 'Medical and 
Dental' 

(((Abs Rate Staff Group 
Dim.Staff Group = 
'Medical and Dental') AND 
(Abs Rate Assignment 
Dim.Contracted Wte <= 
1.2)) OR ((Abs Rate Staff 
Group Dim.Staff Group <> 
'Medical and Dental') AND 
(Abs Rate Assignment 
Dim.Contracted Wte 
BETWEEN 0.05 and 1))) 

MHWELL138 Proportion of days sick in 
the last 12 months for 
Nursing and Midwifery 
staff 

Abs Rate Staff Group Dim.Staff 
Group LIKE 'Nursing and 
Midwifery Registered' 

MHWEL139 Proportion of days sick in 
the last 12 months for 
other clinical staff 

Abs Rate Staff Group Dim.Staff 
Group IN ('Add Prof Scientific 
and Technic', 'Additional Clinical 
Services', Allied Health 
Professionals', 'Healthcare 
Scientists') 

MHWEL140 Proportion of days sick in 
the last 12 months for 
non-clinical staff 

Abs Rate Staff Group Dim.Staff 
Group IN ('Estates and 
Ancilliary', 'Administrative and 
Clerical', 'Students') 

Support Abs Rate Person 
Dim.User Person Type 
LIKE 'Employee%' 
 
Primary area of work = 
‘Psychiatry’ AND 
secondary area of work 
NOT IN (‘Child and 
Adolescent Psychiatry’, 
‘Medical Psychotherapy’) 
 
(((Wfc Staff Group 
Dim.Staff Group = 
'Medical and Dental') AND 
(Wfc Fact.Contracted 
WTE for Assignment <= 
1.2)) OR ((Wfc Staff Group 
Dim.Staff Group <> 
'Medical and Dental') AND 
(Wfc Fact.Contracted 
WTE for Assignment 
BETWEEN 0.05 and 1)))  
 

MHESR01 Proportion of registered 
nursing staff  

Wfc Staff Group Dim.Staff 
Group = 'Nursing and Midwifery 
Registered' AND Wfc Staff 
Group Dim.Job Role NOT IN 
('Midwife', 'Midwife - Consultant', 
'Midwife - Manager', 'Midwife - 
Specialist Practitioner', 'Student 
Midwife', 'Community Nurse', 
'Community Practitioner') 
(Numerator)  
(Wfc Staff Group Dim.Staff 
Group = 'Additional Clinical 
Services' AND Wfc Staff Group 
Dim.Job Role IN ('Healthcare 
Assistant', 'Health Care Support 
Worker', 'Helper/Assistant')) OR 
(Wfc Staff Group Dim.Staff 
Group = 'Nursing and Midwifery 
Registered' AND Wfc Staff 
Group Dim.Job Role NOT IN 
('Midwife', 'Midwife - Consultant', 
'Midwife - Manager', 'Midwife - 
Specialist Practitioner', 'Student 
Midwife', 'Community Nurse', 
'Community Practitioner')) 
(Denominator)  

Staff 
Ratios  

Abs Rate Person 
Dim.User Person Type 
LIKE 'Employee%' 

MHESR02 
 
 

Ratio of occupied beds 
to all nursing staff 
 

Wfc Staff Group Dim.Staff 
Group = 'Nursing and Midwifery 
Registered' AND Wfc Staff 
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Primary area of work = 
‘Psychiatry’ AND 
secondary area of work 
NOT IN (‘Child and 
Adolescent Psychiatry’, 
‘Medical Psychotherapy’) 
 
(((Wfc Staff Group 
Dim.Staff Group = 
'Medical and Dental') AND 
(Wfc Fact.Contracted 
WTE for Assignment <= 
1.2)) OR ((Wfc Staff Group 
Dim.Staff Group <> 
'Medical and Dental') AND 
(Wfc Fact.Contracted 
WTE for Assignment 
BETWEEN 0.05 and 1))) 

 Group Dim.Job Role NOT IN 
('Midwife', 'Midwife - Consultant', 
'Midwife - Manager', 'Midwife - 
Specialist Practitioner', 'Student 
Midwife', 'Community Nurse', 
'Community Practitioner') 
 

 
5.  Analyses carried out by external organisations 
 
The previous sections describe the analysis that has been carried out by CQC 
where appropriate. 
 
Several indicators are already analysed by external organisations, and in such 
cases we report the results of the external analysis. 
 
Indicators that are analysed externally are shown in tables 3 below. 
 
Table 3: Community Mental Health Survey indicators analysed externally  
 
Indicators Source of 

information 
Summary of analysis 

Community 
Mental Health 
Survey 

CQC/Picker 
Institute Europe 

The Picker Institute Europe run this on 
behalf of CQC, and calculate modified 
z-scores for trusts which take into 
account not just the distribution of 
trust-level results but also the sample 
size within the trust. 
 
We have used these modified z-scores 
to assign  positive and negative 
bandings: 
 
Much worse than expected: Z-score ≤ -
3.09 
Worse than expected: Z-score ≤ -1.96 
About the same: -1.96 > Z-score < 
1.96  
Better than expected: Z-score ≥ 1.96  
Much better than expected: Z-score ≥ 
3.09  

 



 

CQC Insight for mental health NHS services           Page 13 
 

6.  Further reading 
 

Cross-sectional analyses using z-scores and funnel plots 

Spiegelhalter D J. Funnel plots for comparing institutional performance. Stat Med 
2005; 24: 1185-1202. 
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